

Celstran® PP-GF40-20 AD 3004 Black

Celanese Corporation - Polypropylene

Tuesday, November 5, 2019

General Information

Product Description

40% long strand glass fiber reinforced polypropylene, higher tensile and impact strength

General

Material Status	• Commercial: Active		
Availability	• Asia Pacific	• Europe	• North America
Filler / Reinforcement	• Long Glass Fiber, 40% Filler by Weight		
Features	• High Impact Resistance	• High Tensile Strength	
Appearance	• Black		

ASTM & ISO Properties ¹

	Nominal Value	Unit	Test Method
Physical			
Density	1.21	g/cm ³	ISO 1183
Mechanical			
Tensile Modulus	1.45E+6	psi	ISO 527-2/1A
Tensile Stress (Break)	21800	psi	ISO 527-2/1A/5
Tensile Strain (Break)	2.1	%	ISO 527-2/1A/5
Flexural Modulus (73°F)	1.26E+6	psi	ISO 178
Flexural Stress (73°F)	29000	psi	ISO 178
Impact			
Charpy Notched Impact Strength (73°F)	17	ft·lb/in ²	ISO 179/1eA
Thermal			
Heat Deflection Temperature (264 psi, Unannealed)	322	°F	ISO 75-2/A
Heat Deflection Temperature (1160 psi, Unannealed)	300	°F	ISO 75-2/C

Processing Information

	Nominal Value	Unit
Injection		
Drying Temperature	194 to 212	°F
Drying Time	2.0	hr
Suggested Max Moisture	0.20	%
Rear Temperature	410 to 428	°F
Middle Temperature	428 to 446	°F
Front Temperature	446 to 464	°F
Nozzle Temperature	446 to 482	°F
Processing (Melt) Temp	446 to 482	°F
Mold Temperature	104 to 158	°F

Injection Notes

Feeding zone temperature: 20 to 50°C
Zone4 temperature: 230 to 250°C

Notes

¹ Typical properties: these are not to be construed as specifications.

UL and the UL logo are trademarks of UL LLC © 2019. All Rights Reserved.

The information presented here was acquired by UL from the producer of the product or material or original information provider. However, UL assumes no responsibility or liability for the accuracy of the information contained on this website and strongly encourages that upon final product or material selection information is validated with the manufacturer. This website provides links to other websites owned by third parties. The content of such third party sites is not within our control, and we cannot and will not take responsibility for the information or content.